The Crystal Structure of the 1,3-Diglyceride of 3-Thiadodecanoic Acid

By Kåre Larsson

Crystallography Group, Institute of Medical Biochemistry, University of Göteborg, Sweden

(Received 1 October 1962)

The symmetric diglyceride of 3-thiadodecanoic acid crystallizes in the orthorhombic space group $Pca2_1$ with unit-cell dimensions $a=9\cdot15\pm0\cdot02,\ b=4\cdot99\pm0\cdot01,\ c=63\cdot1\pm0\cdot15$ Å and with Z=4. The two hydrocarbon-chain tails in the molecule point in opposite directions and are as usual packed in layers with the chain axes parallel. The direction of the chain-tilt, however, alternates in successive layers.

Introduction

A crystal-structure investigation of glycerides was started by the author a few years ago, but only some general results on monoglycerides have hitherto been presented (Abrahamsson, Aleby, Larsson, Larsson, Ryderstedt-Nahringbauer & von Sydow, 1960). After some work it was obvious that complete determinations of the crystal structures for most forms were extremely complicated. Different glyceride derivatives containing heavy atoms have therefore been synthesized and this diglyceride is one of these. Although it is not isomorphous with any crystal form of the corresponding unsubstituted diglycerides, which are under investigation, there are many structural similarities. Conclusions about the crystal structures of naturally occurring symmetric diglycerides can therefore be based on the present crystal structure of this sulphur-containing diglyceride.

Preparation of crystals

3-Thiadodecanoic acid was prepared by Smith & Hernestam (1954). To obtain the triglyceride of this acid a method intended for normal fatty acids and described by Stacey, Bourne, Tatlow & Tedder (1949) was used, and the final product (dissolved in petroleum spirit, b.p. 40-60 °C) was purified by chromatography over aluminum oxide. The infrared absorption of the sample as well as elementary analyses indicated that a diglyceride instead of the triglyceride had been formed (probably because of the steric differences between a sulphur atom and a CH2-group in the 3-position). The X-ray analysis confirmed this and showed furthermore that the diglyceride obtained from the synthesis was the symmetric one. Crystals for X-ray work were grown from ethyl ether in the form of needles parallel to [100] with faces (100), (010), and (001). The crystals are biaxially positive with the acute bisectrix perpendicular to the (001)-plane.

Polymorphism

Most glycerides have a complicated phase behaviour. Many polymorphous forms exist, and the literature in this field is rather confusing as different workers have used different nomenclature for the crystal forms.

The phase behaviour of this diglyceride has been studied in a camera built by Stenhagen (1951) for continuous recording of the X-ray diffraction pattern as a function of temperature. Heating of the crystal form obtained from ethyl ether solution shows no transition below the melting point at 51·1-51·8 °C. The persistence of long-spacing lines above the melting point indicates that a mesomorphous state exists with a smectic type of structure. On cooling the melt, another form crystallizes at 45.5-44.5 °C. It is unstable and transforms into the crystal form first described within a day at room temperature. Within the experimental errors these crystal forms have the same long spacing, which indicates that the chains pack in layers with the same angle of tilt in both forms. It was not possible to obtain good single crystals of the unstable form and therefore the crystal-structure determination refers to the stable form only.

X-ray data

Rotation and Weissenberg photographs of the 0kl and h0l zones were taken with $Cu K\alpha$ radiation, a calibrated camera being used. The following data were obtained:

Molecular formula: C₂₅H₄₈O₅S₂. Molecular weight: 492·76. Unit cell: orthorhombic.

 $a = 9.15 \pm 0.02$, $b = 4.99 \pm 0.01$, $c = 63.1 \pm 0.15 \text{ Å}$.

Four molecules per unit cell. Number of electrons: 1080.

Density calculated: 1.136 ± 0.006 g.cm⁻³.

Density measured: 1·14 g.cm⁻³.

Absent reflexions: 0kl when l odd and h0l when

h odd.

Space group: Pca21.

Intensities were estimated visually by the multiplefilm technique and corrected for the polarization and Lorentz factors but not for absorption. Absolute values were later obtained by comparison with calculated structure factors.

Structure determination

No pronounced sublattice, giving information about chain packing, is found in the reciprocal lattice. Patterson (100) and (010) projections, with coefficients sharpened to correspond to atoms at rest, gave the sulphur positions and the chain packing. The origin may be chosen arbitrarily along the c-axis and following convention it was placed half way between the sulphur atoms of the molecule. From the methyl contacts a probable arrangement of the chain tails bonded to the sulphur atoms could be derived. Electron-density projections based on phases from the sulphur atoms and chain tails were calculated. The positions of these two chain parts in the projections were pseudosymmetrically related by a two-fold axis through $(0, \frac{1}{4}, 0)$ parallel to a. The electron-density projections based on these positions, which have the same symmetry, showed the rest of the structure except for the carbon atom in the middle of the glycerol group and the oxygen atom attached to it. These 'one-fold' atoms appear ambiguously if they do not lie on the axis of pseudosymmetry. The peaks in the electron-density projections correspond to two position sets for this group. One of the two equivalent sets was chosen, as disorder is improbable on the following grounds. The peak positions indicate that there is a hydrogen bond between the hydroxyl group and one of the carbonyl oxygens. If the hydroxyl groups are disordered, the two carbonyl groups will be equivalent with regard to the hydrogen bond. The carbonyl band in the infrared absorption, however, is split (peaks at 1710 and 1750 cm⁻¹), and this indicates that the two carbonyl oxygens in the molecule are not equivalent (cf. Chapman, 1956).

The (010) projection was refined to R = 0.19 by successive cycles of structure-factor calculations. electron-density summations and difference syntheses. The refinement could not be performed very far in the (100) projection because of the serious overlap (cf. Fig. 2); even the general shape of the molecule was uncertain at this stage. There were four possible ways to join the glycerol group with the carboxyl groups owing to the poor resolution (Fig. 4). A Patterson section through $z=\frac{1}{6}$, corresponding to the intermolecular S-S peak, gave the relative positions of the two chains in the molecule (a displacement of the chains $x=\frac{1}{2}$ does not make any difference in the projections). A three-dimensional electron-density calculation based on all atoms except for the glycerol group showed which one was the true structure of the two remaining possibilities. Another cycle of structure-factor and electron-density calculations was performed and new y-coordinates were derived. Anisotropic least-squares refinement was then started.

At the fourth round of least-squares refinement a difference synthesis was calculated, which indicated shifts in positional and thermal parameters in accordance with the least-squares results. The hydrogen atoms were not included in the refinement as their large number (48 in the asymmetric unit) would increase the calculation time seriously. After nine rounds of least-squares the R-value was 0.16 and all indicated shifts were less than about half the estimated standard deviation. In order to see if the neglect of hydrogen atoms might have influenced the refinement, one round of least-squares was performed with the hydrogen atoms included, their positions being calculated from the data given by Vainshtein & Pinsker (1950). The R-value was slightly improved and all positional shifts had the same directions as in the previous round without the hydrogen atoms.

The weighting scheme applied in the refinement was

$$w = \frac{1}{1 + \left[(|F_o| - 8|F_{\min}|)/5|F_{\min}| \right]^2} \; .$$

The scattering factors for carbon and oxygen were taken from Berghuis, Haanappel, Potters, Loopstra, MacGillavry & Veenendaal (1955), for sulphur from Viervoll & Øgrim (1949) and for hydrogen from McWeeny (1952). The calculations were performed on a Ferranti Mercury computer with programs described by Mills & Rollett (1961).

Table 1. Atomic coordinates

	x/a	y/b	z/c
S(1)	0.3070	0.160	0.08442
S(2)	0.3013	0.343	-0.08448
O(1)	0.3303	0.021	0.03054
O(2)	0.5229	0.288	0.04444
O(3)	0.3500	0.477	-0.03160
O(4)	0.5100	0.212	-0.03790
O(5)	0.2400	0.566	0.01205
C(1)	0.3995	0.227	0.04382
C(2)	0.2776	0.325	0.05901
C(3)	0.4708	0.302	0.09448
C(4)	0.4940	0.210	0.11680
C(5)	0.6331	0.294	0.12720
C(6)	0.6460	0.223	0.15053
C(7)	0.7840	0.285	0.16021
C(8)	0.8065	0.221	0.18398
C(9)	0.9528	0.281	0.19376
C(10)	0.9616	0.216	0.21654
C(11)	0.1076	0.290	0.22637
C(12)	0.3770	0.223	-0.04004
C(13)	0.2754	0.194	-0.05956
C(14)	0.4714	0.197	-0.09440
C(15)	0.4900	0.298	-0.11700
C(16)	0.6367	0.214	-0.12754
C(17)	0.6463	0.286	-0.15025
C(18)	0.7669	0.222	-0.16110
C(19)	0.8082	0.297	-0.18359
C(20)	0.9368	0.189	-0.19445
C(21)	0.9604	0.283	-0.21716
C(22)	0.0917	0.211	-0.22929
C(23)	0.4390	0.886	0.01612
C(24)	0.3290	0.770	0.00135
C(25)	0.4340	0.637	-0.01562

Results and discussion

The atomic coordinates are given in Table 1 and the vibrational parameters in Table 2. The A- and B-components of the final structure factors are listed in Table 3, and the final electron-density projections along the short axes are given in Figs. 1 and 2.

The bond distances and angles in the molecule are given in Table 4. The standard deviations estimated

from the least-squares treatment are 0.01 Å for sulphur atoms, 0.03 Å for oxygen atoms, and 0.04 Å for carbon atoms in the x- and z-directions and almost twice these values in the y-direction. The relatively large number of parameters and also the fact that the intensity data were of rather bad quality limits the accuracy in the atomic positions seriously.

Figs. 3 and 4 show the molecular arrangement. The most striking feature is the chain arrangement

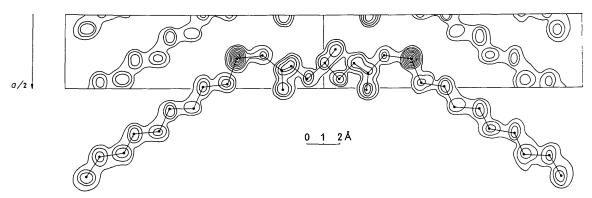


Fig. 1. Electron-density projection along the b-axis. Contours are given at intervals of 2 e. Å^{-2} , starting with 2 e. Å^{-2} .

Table 2. Final anisotropic vibration parameters used in the temperature factor $\frac{2^{-(h^2b_{11}+k^2b_{22}+l^2b_{33}+klb_{23}+hlb_{13}+hkb_{12})}{2}$

			00			
	b_{11}	b_{22}	b_{33}	b_{23}	b_{13}	b_{12}
S(1)	0.0150	0.197	0.00031	-0.00044	-0.00044	-0.0120
S(2)	0.0149	0.200	0.00030	0.00093	0.00059	0.0220
O(1)	0.0177	0.102	0.00057	-0.00393	-0.00334	-0.0061
O(2)	0.0149	0.140	0.00019	-0.00529	0.00055	-0.0004
O(3)	0.0220	0.102	0.00063	-0.00622	-0.00295	0.0049
O(4)	0.0155	0.125	0.00035	-0.00823	0.00317	0.0123
O(5)	0.0115	0.097	0.00040	-0.00240	-0.00107	0.0025
C(1)	0.0196	0.113	0.00025	0.00037	-0.00445	-0.0991
C(2)	0.0213	0.231	0.00029	0.00668	0.00035	0.0061
C(3)	0.0207	0.095	0.00036	-0.00843	0.00077	-0.0789
C(4)	0.0116	0.210	0.00020	-0.00378	-0.00030	0.0051
C(5)	0.0267	0.112	0.00038	0.00353	-0.00397	0.0044
C(6)	0.0289	0.079	0.00019	0.00135	-0.00123	0.0372
C(7)	0.0143	0.093	0.00031	0.00138	-0.00140	0.0334
C(8)	0.0174	0.137	0.00044	-0.00474	-0.00165	-0.0197
C(9)	0.0139	0.145	0.00027	0.00591	-0.00507	0.0060
C(10)	0.0228	0.180	0.00038	-0.00055	-0.00147	-0.0198
C(11)	0.0349	0.195	0.00029	0.00556	-0.00414	-0.0340
C(12)	0.0332	0.117	0.00063	-0.01962	-0.00546	0.1164
C(13)	0.0197	0.188	0.00037	0.00809	0.00052	-0.0641
C(14)	0.0192	0.102	0.00029	-0.00409	0.00117	0.1070
C(15)	0.0128	0.187	0.00024	-0.00885	0.00343	-0.0107
C(16)	0.0212	0.097	0.00047	0.00034	0.00240	0.0744
C(17)	0.0211	0.101	0.00036	-0.00180	0.00434	-0.0071
C(18)	0.0211	0.093	0.00038	-0.00233	0.00411	0.0066
C(19)	0.0142	0.128	0.00029	-0.00224	0.00227	0.0087
C(20)	0.0136	0.182	0.00039	0.00330	0.00228	-0.0026
C(21)	0.0199	0.189	0.00030	0.00229	0.00273	0.0438
C(22)	0.0211	0.182	0.00040	-0.00348	0.00052	-0.0058
C(23)	0.0278	0.086	0.00054	-0.01962	0.00592	0.0012
C(24)	0.0230	0.082	0.00025	-0.00504	-0.00121	-0.1964
C(25)	0.0271	0.176	0.00036	-0.00383	0.00198	-0.0273

Table 3. The A- and B-components of the final structure factors An asterisk marks changes in h and l. Each non-asterisk line gives k, $100A_o$, $100B_o$, $100A_c$, and $100B_c$

• • •					1 0					_			•	•				·	
2 -19781 • 0 2	۰	-20265	. •		5652	۰	2596 -2600	•	• , '	-2355 1636	4866	-2330	4813		• ,	16 4167	-1927	4550	-2105
1 -1135 2 4120	3277 -101	-1456 3239	4205	• 3	818	٠	645	•	, 3	620	-2719	1188 863	-69 -2862		1 2	-1:2	3607	4550 7177 390	4609 -614
1 -775	4197	-977	5293		393	-12667 2154	379	-13204 3390	• • •	1043	154	1602	230		. 1 .	-463 19	873	-77	146
2 0156 4 - 56	510 -1456	5977	783 -268	• :	-9097	276	-2856	269	3	-1826	173	792 -1852	169		3	356	2456 3260	332	3140 3019
1 -12,00	2188	-1414	2577	3	-851	-2533	1432	~2990 87	11	-316	\$ 5 8	-1398	852		٠,	20	-916	-4	-643
2 2338 3 -338	1554 950	1327 -443	539 2038	. 3	1 3	562	-35	31	• , :	3123	687	2624	577		•	2913 - 494	-1932 6562	2851 7551 810	-1891 9546
• • • \$		1253	-44	3	43°	-4040	451 -213	1027	• 1	731	-1449	937	-1650		• 2 2	724	-3312		-3700
0 ~4597 1 ~533	1109 421	-5070 -1211	956	• ;	-2629	1184	-1950.	678	•	3139	-16	3479	-16		1	-6426	7754 7171	-5643	-814 -151
2 3721 3 ~453	1313 2868	3450 -447	1217 2835	3	-652	-2895 298	-701 2391	-3113 297	• 1,	325	1622	435	1309		3	2610	3101 607	1652	2636 431
• 0 ,10 • 4557	1107	4015	975	• ,	1 5	22233	108	19053	• ' :	40	535 -186	-300	372		• • •	3 a 2	-624	734	-895
1 -579 2 1177	663 1839	1075	1891	3	-1020	-1290	-1823 -116	-2161	• .	-1495 47 1380	-1149	-1507	-190		2	-617	742	-754 -1011	4732 -935
3 -191 4 -1453	2358 -217	-1455	2792 -217	• ,	1 6 23064	557 839	21942	530	3	-707 48	599	-308	261		• 1 •	1245	61	841	41
0 -2626	773	72379	700	5	647 809	839 348	-1077 214	1396		-2530 42	453	-2741	471		ī	-1614 -142	229	-2084	-4319 396
1 -1422 2 1730 4 -2856	4280 2062	-1538 1234 -1441	4635 1470 24	• ,	-588	-3859	-497	-3262		1214 50	-069	1206	-977		• ៌្ •	24	2499 2039	-1 47	2464
1 -1359	48 5024	-1440	5324	3	-1052 96	759 1587	-1839 71	1176	1 2	-1140 216	-498 -1955	-652 213	-265 -1925		2	211-	-1542 1007	-1257 -95 416	2549 -1283
3 165	-1968	126	-1502		7773	1228	7219	1140	• , ,	52 375	-1692	371	-1672		٠٠,	1261	768	340	207
0 -11517	1663 3446	-12345 -1530	1782 3860	3	-425 544	1894 826	-453	3012	• , 1	\$4 2625	130	2960	136		0	*24	7552	233	-1564
3 376	-2423	435	-2003	1	-297 -1924	6632	-277 -2109	6179	• 1	3 3 5 5	1351	40	1533		a 3	-1,3 -2,3 -1,999	727 616	-146 -3107	1139 650
0 -4994 1 -663	1615 -349	-5606 -1317	1813 -1296	3	-243 -255	-709 771	~324 74	-945 223	• ' ,	-364 56	1678	-332	1714	•	• ` 2	26 520	-139	1221	-194
3 -3466	1342 -65	-3820 824	1478	• ,	1 10	912	8	· ·	t 2	116	-123 1664	1662	-91 1971		1 2	-1216 -1066	434	-1200 -916	428 -902
1 -429	-4216	-500	-4913	;	-23 402	1704	-19 458	759 1420 766	• 1	-406	2350	-501	2946		· 3 2	199	1643	161	1330
2 -3792 • 0 22	343	-+695	371	• 1	1 11 -1746	5492	-1733	545!	•	-1402	256	-1592	269		3	-54 -1671	575 −898	-14 -1711	-263 569
0 11492 I 7434	4733 -6083	10401 -+70	4284 -6583	3	-1975	-2046	-2527	66	• • •	-1385	•	-1863	v		• 4 2	-213 26	-698	-276	-1165
2 ~6380	-139	-6488	-141	• 5	339 -67 I 12	1040	-39	469	• 2	-+341	•	-3791	۰		2	3339	-409 -204	3345 -1620	-410 -230
0 7128 1 –56	4607 -2684	7490	4641 -2851	1 2	-611 -92	799	-612 -89	500 -1755	1	-671 2194	-16864 -695 986	-685 2562	-17228 -611	•	3	-135	1276 -511	-23 266	1149 -266
2 -3650	-375	-3585	-368	. 3	-1526	1181	-973	753	• 1	193		41	212		• 。 •	-436	3;6	-56: -959	2252
0 12080 1 1225	4460 -1812	10389 878	3835 -1299	1	-10G1 -137	3854 -2239	-1001 -119	8124 -1948	1	-6073 990	-13	-5642 1394	-2667		3 4	-1149	-1759	-271	302 -1320
2 -4441 5 650	-302 -995	-4896 429	-333 -657	• 5	116 1 14	796	65	439	3	-2379 500	1076	-2544 611	-565 1296		• • •	30 2175	-304	2151	-692
0 -10102	4755	-8464	3984	1	-90 352	784 -3492	-109 405	943 -4008	• • •	-195	-16213	-185	-9684		2	-750 -1026	918 -97	-1172	1451 -163
1 1739 2 2553	2561 -1015	1447 2834	2131 -1127	• ,	1 15	5277	-1067	5047		3575	-423 643	4247	-514 163		• 4 2	31	-1027	102	-1:6
3 -848 4 1517	-3234 133	948	-3900 83	. 3	-150 1 16	-1161	-1 20	-1425	•	5465	-476	4659	-425		1	-511	1066	-1265	1495 745
• 0 30 0 -10536	1132	-9172	986	1 ¹	5450 320	765 - 3504	5362 350	748 -3691	3	912 -2064	-1769 -460	1227 -3979	-1301 -687		4	137	-1356	-6; Ē 5÷	-:757
1 1845 2 3344	-607 365	1757 3797	-578 415	• 3	641 I 17	960	710	810	. 4 .	-633	-363	-137	-206		•	-: 651	-1559	-2065	-1702
3 -755 4 1423	-1200 -934	629	-1513 -413	• 1	7920 1 10	\$477	-717	4241	• • 1	-305	-6073	-296	-5892		• 1 2	-677 33	1167	- 8 90	1455
• 0 32 0 8034	38	6572	23	1 3	1940	653 1623	3671 1001	617 837	. 4 .	4532	-366 -1505	2221	-1407		2	-974 £1	-1211	-1113 94	-1411
1 1712 2 -1916	-6768 471	1589 -2364	-6282 581	• .	1 17	-1014	441	~939	• •	-332č	-1493	-2930	-1315		• • •	-63 € £	-240 t	-5361	-2405
3 -440 4 1243	3190 -430	-590	4278 -347	• 3	T439	1005	-470	1121		-1 262 -1 262	-367 -4+1	-1409	-742 -327			1724	1131	-902 214-	1500 247
0 34 0 1498	-1114	1467	-1092	1 2	2272 523	795	2962 446	763 2296	٠	7 -1 530 675	9030	-1510	8909		• • •	3 S 7 9	-2570	÷ 2	-2:81
1 845 2 1591	644	1413	699	• 3	2 3 1 2 1	562	434	507	2	273	-2632 -245	2513 328 2208	-143 -3397 -335		٠, ٠	30 -6532 1902	-2729	-6066	-2534 621
• • 36	-2369	1266	-2144	3	1311	-3616	-306	-3637 1190	. 4	-607	-725	-137	-145		• ๋ ๋ ๋	37 ~3¢	\$77	2049 -51	
• 0 38 • -3558	-1742	1461	1360 -1647	• *	-1010 1 21	-133	-1249	-165	ů .	7243	-1470 -14300	6143	-2101 3531		. i	-190	-4493 1175	-302	1509
1 777	2176	3364 893	2502	3	74993 149	4363	138	4643	3	-1300 532	-140	-1028 510	-5+2 -2474		0	7124	-1725 233	-7302 3921	-1770 302
o -6563	-1261 1753	-6238 864	-1214 1827	3	669 -167	-1393	700	-1024	• 4	-712	-1,61	-405	-375		• ै •	39 770	4145	565	4520
0 -6363	558		471	• !	2073 -1675	-7615 -107	1664	-6113	ı	2199	4145 -200	-709 3032	38+5 -267		1 2	19:3	137	2250 -701	155
2 -1125	-1433 960	-5265 -639 635	-1062 863	• .	1 24	-107		-95 491	3	175	-1610 -317	167	-9-5 -340		• •	40	-1599	2790	-1922
0 -2774	269	-1460	458	. ;	-3549 -699 1 25	1467	-3034 -415	677	• 。 •	3012	-3768	3101	73245		• 1	-579 41	-12:5	75 67	-1995
2 -2224 G 46	-911	-1923	-787	1 2	2295 -2436	-6973 -279	1967	-7669 -245	1	7245	3296	-1815	3838 -230		ı	2 S 1 S 1 1	2671 37	1145	3097 26
2 -2964	-1337	2636 -2661	1765 -1375	• 4	1 26	541	456	169		835	-1185	763	-2050		• , =	42 7325	-543	8043	-024
• 0 46	1005	3661	1910	1 2	2310	-5076	1444	1079 -5305	1 2	3450	~16094 ~20	4287	-13412 -25		• 2	-1702 -43 -423	50	72370 - N	31
* 6 56	-1427	-2769	-1389	3 4	-1863 73	-5076 615 1358	· -1124	371 1483	. 4	726 12	4710 635	183	6116 210		• ੇ •	44	1991	-4+0	2042
2 - 1560 2 - 72335 2 52	-1268	1763 -2363	1632 -1250	• ,	27 226	111	1912	230		19585	-2408	-18782 1155	-2366 -1036		• ំ :	20-) 5 40 1122	342 802	17+5 803	200 575
0 -162	775	- 55ĕ	863	3	2823 -227	-711 -796	2751 -116	-692 -407	2	ςligh	-402	6866	-484		• 2	4.5			
* -1907 • 0 34 • -2653		-1706	-736	• ,	1 28 3429	. 964 -		744	3 4	519 -735 13	1052 -527	742	1302 -209		1	-3575	1477	-3441 -421	-1:3-
• 6 -3653 - 721	-766	-2351	1619		22· 1 30	-2102	90	-2053	,	146 2647	55 u.E	117	4397		• ੈ :	1400 40 842	20	ۇزاد. دەد	-je7 -1013
242	-1678	-844 466	-890		2433	1179	1768	657	4	-3	1090	3917	978		• • ,	-154 50	1001	-104	1407
4 -693	-1315 -1864	-469	-689	1	1 & 3 2 5	-1118	426	2946 -1468		-7401 524	-3616	-6150 605	~3949 ~1398		• ;	-337	-13-4	-393	-1405
1 439 2 1763 3 7495	445	578 1622 -tar	469	1	1 32	711	3958	622	3	4355	698 1269	4017	1512		•	دن: دن:	1971	144	-14:3
• 0 60 0 2067	-1255	-625 3103	*355 =1395	• 3	1 33	212	-2650	306 ,	• ໍ ລ	15 205	4046	370	3525		• 2	52	951	5520	1007
• 6 61	-1541	1540	-1395	1 2	-1455 -2063	-2625 -490	-1577 -2758 722	-2845 -050 -982	1 2	2172	-15	3197	1040		• 。	3.3 074	3093	7=0	3945
-1643	-679	-1665	-697	• 3	549 1 34	-747 1379	-	-982	• , •	10	-1045	-2337	-2541		• ,	54 1100	989	1119	1015
કાર્ક અ	233	2532	437	1 2 3	-553b 621 -1841	1379 1752 -268	-5052 871 -1317	2455 -191	2	3.475	-376	449 2773	-107		• 。 •	-1800	-245	-3015	-274
• 6 70 2635	392	2970	411		35 -947	340	-1317	463	3 4	768	-034	952	1594 -144		• 。 •	-203	-1741	-239	-1615
3646	9;8	1851	1075	3	1 16	-2253	360	-2041	۰	17 1056	Bott	1027	7025		• •	-1640	-743	-145	-505
•	••	•		1	-66.94	996 -376	-1,025	-174 gài	2	71.0	3045	3269 7595	307		• 。 '	38	-1787	24	-1157
				,	•	• • •		•	3 4	457	735	334	-403						

Table 3 (cont.)

																	6 17			
•	94	-1550	94	-1541		-1359	6995 728	18 -1794	7316	• 0	4 57		1444	-310	-1029	•		2614	-183	2619
٠	2 71 415	-1398	429	-1435	• •	4 2	1076	3418	86.0	• 0	5 1	1	1734	90	3217		-2769	194 -1303	~3098 -1448	216 -1392
•	4051	•	4128	۰	• 3	-1579 4 3	204	-1357	210	• 1	5 -62		-5800	-584	-5511	•	6 -859	2839	-784	3592
1	-366 -1995	1601 -50	-176 -1744	911	0	-1044 -2657	2427 782	-955 -3625	992	1 2	-10 250		3075 803	-98 3043	-1863 960	•	6 21	-379	-1302	-471
• ,	3 428	-75 4	2548	-583	• 0	4 4	-78	-1321	-90	• 1	5 4	8	234	5212	230	•	6 24	-292	4028	-3 b s
•	-225	1277	-305	1733	• 1	-587	-2200	-577	-2161	• 1	5 5		1766	-485	1544	•	6 26	-510	3278	~545
1 2	-210 -3367	-1727 -223	-163	-1337	0	-114 -2000	-4409 572	-1753	499	• 1	5 7		5825	-498	6343	•	6 27	2146	-1381	1648
	3 -1 334	-202	-1299	-143	• 。	4 -2792	1063	-3543	1349	, ,	-53 -346	6	5767 991	-544 -2922	5949 1174	•	3226	-616	3025	-473
• 1	3 S	1300	59	1519	1 2	2421	846	-518 2690	940	٠,	-339	4	-101	-3039	-90		6 29 0 - 706 1 1606	4758 -408	-1032 2459	6950 -625
1	-3011	-3543 -369	-2700	-3010	0	4 -169	-4978	-165	-4881		5 -25 -141	: -	-2680 816	-298 -1921	-3421 1110		2 54	-1521	29	-2760
٠.	3 -2611	-300	-2426	-334	•	-3774 -645	3416 -4160	-3928 -655	2517 -4226	• [5 10		-253	1509	-356		0 -17;2	-1003 -159	-2624 1801	-1503 -126
• •	3 -672 3 -672	-4360	-569	-3709	2	3120	200	3407	312	• ;	5 11		-1623	-570	-1170	. •	6 31	1346	-89	1465
	3 -3221 437	-670 -1331	-2463 516	-513 -1570	0	199	-7932 688	170 3530	-6777 768	• .	-226		-832	-2057	-758	•	6 32	-673	2985	1235
• [3 9 693	105	494	75	• 1	3430 -65	1428	-63	1371	• .	5 13	9 -	-2879	-274	-1718	•	6 33 770	-2394	906	-2818
•	3 10	-649	1528	-753	• °	5745 4 II	1045	4942	1415	• 1	187		817	2219	969		6 34	-114	-1399	-113
• 1	3 11	3 5	3412	39	0	-613	3 9 6 9 - 9 9	-731	3904	• *	5 16		1143	2833 -2218	1088	•	6 35	-1691 -1718	4399	~1732 ~1527
1	-96 1905	-833 -301	-121 1433	-1052 -226	• 3	4 12	-2751	122	-3255	,	-194	•	3195	29	58 1259	_	0 1159 2 -1486 6 17	-374	-574	-144
٠,	3 -1063	-631	-1322	-78 s	0	2247 -641	1497	2177 -910	-1816		5 17	•	2970	-143	3022	·	6 37 6 38	-2 é 6 o	1513	-3384
. 3	3 13	1091	-8	1566	• *	1345 4 13 1061	1023	729	554 5164		5 20	0	2642	741	2578		0 2072	101	1863	90
2	-6283	5630 -853	-1175 -3494	6137 -474 -474	i	-3200 -195	5111 242 -3078	-3676 -237	278 -3745			6	465	-1162	493	•	6 41 0 804	1942	936	2263
• ,	-2921 3 14	-397 -1665	-3494 5222	-1426	• •	4 14 -2033	645	-1965	630	. '	5 23	4	1383	-790	982	•	0 43	2335	196	2011
. ;	22	6130	26	7291	1 2	-836 3246	-1463 511	-1029 3887	-1801 612	• *		9	916	-2105	964	•	7 -1347	-119	-1499	-131
٠		6649	-406	5344	• •	4 15	-4992	918	-4904	• 1	5 25		1321	540	1080	•	7 3 1 130	2195	170	2867
1	1721	-1352 3040	1923	-1511 2630	• 1	4 16	313	2533	277	• '	5 26	•	-1913	603	-2370	•	3373	120	3522	126
•	3 17	-8375	-627	-72+9	• 2	4 17 995 4 18	-3139	883	-2785	• 1	5 21	,	1144	731	1581	•	1 -454	-1924	-582	-2311
	1 1677	61	1030	33	• .	4 18	1047	2770	975	• '	5 24	,	109	2346	105	•	3234	574	3104	551
•	3 19	-424	-4652	-404	• •	4 19 710	7445	603	-6315	• '	5 39	•	3498	120 -1062	3422	·	7 7 7 1 7 7 10	-3110	-714	-1806
:	593 3609	-6355 -341	462 3019	-4952	• 1	4 20	-216	4399	-211	• '	5 34		-323 2627	-283	2592	·	7 -2219	142	-2072	133
• ;	3 -107	-1132	-94	-999	• 1	4 21	-387	2280	1201 -368	• 1	5 3	1	-562	-2251	~432		7 -696	2053	-856	2524
• '	3 21	177	-1039	167 -2066	• '	4740 4 22 -612		4503 -718	2061	•]	5 3	3	343	-1924	225		7 13	4.5	-3402	43
	275	-2607 -180	2633	-180	1	196	2330 -1448 -611	162	-1240 -341	•	5 -36		-647	-4682	-837		7 14	2729	-114	3 2 4 7
:	3 -1545 3 -23	-391	-1414	-257	• .	4 23	6269	-230	5781	•	5 3	5	-5974	-513	-6288	•	7 19	-964	-951	-1 390
-	1 844 2 1608	14	961 1272	16 83	1	2091 725	-42 -1562	2152 958	-43 -2065	•	5 3	5 3 I	-788	2545	-967		7 21	*-2021	390	-670
•	3 24	-542	1037	-554	•	4 24	601	1775	459	•		91	-631	-1063	-891		1 1354 2 2171	-339	926 2787	268 -436
•	3 -627	992	-1241	1962	• •	4 -831	5960	-7 5.9	5448	•	5 -1	14	2155	-145	2738	•	1 7 -1266	356	-1789	341
	: EÉ7	-517 -203	1016 -1719	-604 -119	• •		1021	-1555	1038	•	5 4 1 -22	0	1061	1510	•		7 25 1 696 7 27	-982	118	-1145
•	3 26 1 -1704	-55	-2230	-72	• •	4 -359	1829	-357	1816	•	5 4	1	-337 1578	-1324 296	-345 1457		1 420	-1864	214	-948
	2 -675	1674	-75 t	1861	• •		917	-1791	994	•	5 4		2093	30	2424		7 34	2413	-61	676
	1 564 2 -1855	-3939 -269	-1762	-3176 -274	• •	4 -3190	602	-3556	671	•	. 5 -: 5	4	-145	-1673	-139.		7 35	-555	-1811	-762
•	3 28 1 -2106	-773	-1806 -862	-662 1889		4 31 -46	1392	-42	1264	•	s _s	5	2099	-351	1845		7 37	2227	-439	2686
•	3 -722	1583				4 32	3 9 3	-1383	380	•		•		5451	۰	•	1 -367 δ ο	1858	7424	2143
	1 798 2 -1267 3 30	-4769 -66c	733 -837	-4397 -436	0		4511	117	4046		6 -13	87 1	٥	-2378	٥		8 1	۰	-2157	1208
	1 -3024	105	-3177	110	• ;	4 34	622	-894	504		ი 1 გ	33 86	-6188 -2520	35 513	-6552 -1458	_	2 24	1471 -1978	57 17	-1363
	1 745	-3519	660	-3118	•	4 35	6530	492	6679	•		3	1791	4 2858	2341 -18	•	8 -253 8 88	-1788	-256	-1806
	2 33,	-341	611	-282	• ,	-1371	924	-1712	1154	•		91 3 13	5800	7495	6951		8 2542	-285	3089	-346
	3 34		1991	-163	• ,	4 37 2 123 1 -1756	6293	125 -2245	6422			13 77	-2999	604	-3797		0 -716	-3549 2243	-702 483	-3 479 2670
	1 1750	-640	1737 -570	-573 -403	• ;	4 3 6	-j ₉₆	-2598	-468	•	0 -26		-229	-3997	-349		8 10		-3031	-201
	1 3 -35	3170	-363	2549	• (4 39	3046	424	3338			5 8 5 7	2780	18	2642	•	2 -164		-159	1739
	3 3 C 1 3 C 2 O 2 2 7	-417	3411	-372	•		160	-2399	180		2 3	24	3714 -1438	599 150	4246 -658	•	0 -4189	-30	-4364	-31
	3 27	3373	-216	3263		-6285	-41	6687 3079	-43 -62		。	17	-1521	-297	-2053	•			2064 -120	425
	1 236		139	-847	• ,		-7009	-264	-8185	•		9	494	-2092	655	•			-74	-1533 -147ô
	3 43			-3		137	~96	-1267 180	-76 3337	_	1 -13	0	-513	-787	-300	•			1840	-471
	1 177			-6688	•	. 4 42	-412	2235	-418		2 -18	15	148	-2078	109	•	2 2056		1892	
•	3 45	67%		793	•	0 -1460	~4 5	-1366	-43	·		23	-4707 1326	721 -391	-5449 2032	•	9 1		-320	-2157
_	2 1925	346	1225	-1387 220		4 47 -900	1162	-826	1067	•	0 -11	35	-956	-671	-519	•	9 7		-58	683
•	1 338	-315	4487	-418	•	-1456 4 49	-247	- 601	-102		2.6 -1	13	-146	-1805	-187	•	9 14		1225	-397
•	1 79	, 5650	837	5936		-748 1 668	4113 -2019	-732 702	4037		0 1	125	-4774 342	457 1523	~5133 354		1 506	-1007	360	-638.
•	3 51 1 55° 2 -144;	5 -1424 3 -26			•	4 50		2085	-939	•	6 :	4	1561	-703	1771		1 1570	-43	2073	-50
•	3 53				•	4 51	-1764	-616	-2418		0 -20 I	44	1004	-3023 50	1094		10 0	ه د	1719	٥
•	6 522		5510		•	c 4 -53 -237	-3128	-301	-2794	•	6 -1	642 15 965	-847	-952 2240			0 -139	1245	-1015	904
	3 -256		-2220	0	•	c 4 -1505		-978	-46	•	6 -1	16	179 -277	-2933						
											2 -1	365	-782	-1401	-040					

Table 4. Bond distances and angles

m 1	D		
\mathbf{Bond}	Distance	${f Bond}$	\mathbf{Angle}
C(1)-C(2)	1∙55 Å	C(1)-C(2)-S(1)	107°
C(2)-S(1)	1.82	C(2)-S(1)-C(3)	105
S(1)-C(3)	1.78	S(1)-C(3)-C(4)	110
C(3)-C(4)	1.50	C(3)-C(4)-C(5)	117
C(4)-C(5)	1.49	C(4)-C(5)-C(6)	115
C(5)-C(6)	1.52	C(5)-C(6)-C(7)	115
C(6)-C(7)	1.44	C(6)-C(7)-C(8)	119
C(7)-C(8)	1.55	C(7)-C(8)-C(9)	118
C(8)-C(9)	1.50	C(8)-C(9)-C(10)	114
C(9)-C(10)	1.48	C(9)-C(10)-C(11)	113
C(10)-C(11)	1.52	C(12)-C(13)-S(2)	126
C(12)-C(13)	1.55	C(13)-S(2)-C(14)	105
C(13)-S(2)	1.76	S(2)-C(14)-C(15)	106
S(2)-C(14)	1.83	C(14)-C(15)-C(16)	114
C(14)-C(15)	1.52	C(15)-C(16)-C(17)	114
C(15)-C(16)	1.56	C(16)-C(17)-C(18)	115
C(16)-C(17)	1.48	C(17)-C(18)-C(19)	115
C(17)-C(18)	1.57	C(18)-C(19)-C(20)	115
C(18)-C(19)	1.47	C(19)-C(20)-C(21)	118
C(19)-C(20)	1.45	C(20)-C(21)-C(22)	123
C(20)-C(21)	1.51	C(2)-C(1)-O(1)	105
C(21)-C(22)	1.47	C(2)-C(1)-O(2)	126
C(23)-C(24)	1.49	O(1)-C(1)-O(2)	128
C(24)-C(25)	1.58	C(13)-C(12)-O(3)	106
O(1)– $C(1)$	1.47	C(13)-C(12)-O(4)	133
O(1)-C(23)	1.50	O(3)-C(12)-O(4)	100
O(2)-C(1)	$1 \cdot 17$	C(23)-C(24)-C(25)	100
O(3)-C(12)	1.40	C(23)-C(24)-O(5)	111
O(3)-C(25)	1.49	C(25)-C(24)-O(5)	111
O(4)-C(12)	1.23		
O(5)-C(25)	1.47		

obvious in the (010) projection. The hydrocarbon chain tails are parallel in double layers and tilted at the same angle towards the end-group planes, but the direction of the chain-tilt alternates in successive double layers of chains. There is also a bend in the chains at the sulphur atom very similar to that found in 3-thiadodecanoic acid (Abrahamsson & Westerdahl, 1963). The two carbon atoms near the carboxyl group as well as the sulphur atom are twisted out of the plane of the hydrocarbon-chain tails. It was pointed out by Abrahamsson & Westerdahl (1963) that bent long-chain molecules are rather common in structures where the hydrocarbon chain packing is disturbed by the presence of groups other than methylene groups in the chains.

The carboxyl groups together with the glycerol group form a roughly straight zigzag chain (which is not planar, however). These chains in adjacent molecules in the a-direction are oppositely inclined, forming a crossed-chain structure, which is seen in Fig. 4.

The hydrogen bonds (illustrated in Figs. 3 and 4) link the molecules together in the a-direction, and the morphology of the crystals agrees with such an arrangement; the crystals form needles parallel to the a-axis. The distance between the hydrogen-bonded oxygens is 2.94 Å and the angle C-OH \cdots O is 121° . There are three more short contacts (less than 3.2 Å) between the hydroxyl-group oxygen and carboxyl group oxygens. The corresponding C-OH \cdots O angles do not indicate that the hydrogen atom is hydrogen-bonded also to any of these three oxygens, as in the bifurcation of the hydrogen bond supposed to exist in glycine (Albrecht & Corey, 1939) and tartaric acid dihydrate (Parry, 1951), but polar attraction (hydrogen-oxygen) may exist.

The carbon-chain tails are tilted 55° towards the end-group planes. The chain packing is of the common orthorhombic type $(O \perp)$, and the dimensions of the subcell are (average values):

$$a_s = 4.99$$
, $b_s = 7.46$, $c_s = 2.56$ Å.

The volume per CH_2 -group is $23.8~\text{Å}^3$. No significant irregularities have been found in the chain packing. The best least-squares planes through the hydrocarbon chains have been calculated; all atoms lie within 0.1~Å from these planes. The average value of the carbon-carbon distance is 1.50~Å and the average bond angle in the hydrocarbon chain is 115° .

The stacking of the layers is very similar to that found in the C-form of lauric acid (Vand, Morley & Lomer, 1951; von Sydow, 1956). This might be expected, as the chain packing is the same in the two compounds as well as the orientation of the orthorhombic subcell in relation to the methyl-group planes. The atoms on different sides of the gap are related by symmetry in the C-form but not in this structure. The distances from one methyl group in

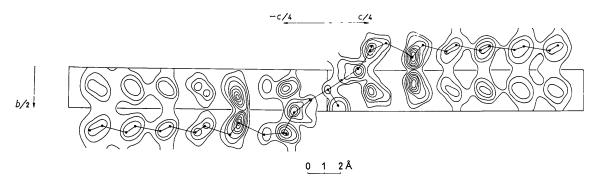


Fig. 2. Electron-density projection along the a-axis. Contours are given at intervals of 2 e.Å-2, starting with 2 e.Å-2.

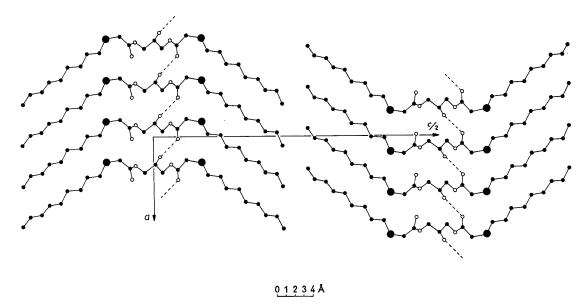


Fig. 3. Projection along the b-axis showing the molecular arrangement. The small filled and open circles are carbon and oxygen atoms respectively and the large filled circles are sulphur atoms.

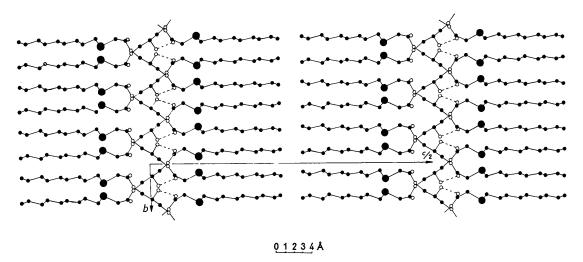


Fig. 4. Projection along the α -axis showing the molecular arrangement. The small filled and open circles are carbon and oxygen atoms respectively and the large filled circles are sulphur atoms.

Table 5. Carbon-carbon distances less than 5.5 Å from the carbon atom in one methyl group to its neighbours on the other side of the methyl gap

	Diglyceride	$egin{array}{c} ext{Lauric acid} \ (C ext{-form}) \end{array}$
CH ₃ -CH ₃	3.93 Å	3⋅85 Å
CH_3 - CH_3	4.17	4.28
CH_3-CH_3	4.17	4.28
CH_3-CH_3	4.19	4.01
CH_3-CH_2	4.61	4.72
CH_3 - CH_2	5.32	5.18

the fatty acid C-form to its neighbouring carbon atoms on the other side of the gap have been given

by von Sydow (1956). These distances are collected in Table 5 together with the corresponding distances in this diglyceride. There are no significant differences regarding the standard deviations. This is rather surprising in view of the differences in the physical properties of the crystals. The crystals of lauric acid show cleavage along the (001) planes, which has been attributed to the weak van der Waals interaction over the methyl gap, and twinning on these planes is also very common. The crystals of this diglyceride, however, form needles with square cross-sections, and neither (001) cleavage nor twin formation have been observed.

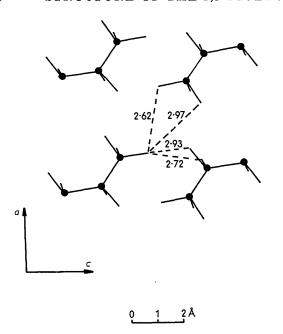


Fig. 5. Projection along the b-axis showing the methyl contact region. Non-equivalent hydrogen-hydrogen distances (in Å) less than 3.0 Å over the methyl gap are given.

The hydrogen-hydrogen contact distances over the methyl gap (Fig. 5) give a more informative picture of the packing of the methyl-group planes than the carbon-carbon distances discussed. The shortest distance is 2.62 Å, somewhat longer than the shortest lateral hydrogen-hydrogen contact between the chains, which is about 2.40 Å.

I wish to thank Prof. E. Stenhagen and Dr S. Abrahamsson for their interest in this work. I am also

indebted to Dr C. Lagercrantz for providing laboratory space. Thanks are due to Mr L. Ahlquist for preparation of the sample and Mrs M. Innes for technical assistance. Grants from the National Institute of Arthritis and Metabolic Diseases, U.S. Public Health Service (A-4006) and from The Swedish Natural Science Research Council, The Swedish Medical Research Council and The Swedish Technical Research Council are gratefully acknowledged.

References

ABRAHAMSSON, S., ALEBY, S., LARSSON, G., LARSSON, K., RYDERSTEDT-NAHRINGBAUER, I. & VON SYDOW, E. (1960). Acta Cryst. 13, 1044.

ABRAHAMSSON, S. & WESTERDAHL, A. (1963). Acta Cryst. 16, 404.

Albrecht, G. & Corey, R. B. (1939). J. Amer. Chem. Soc. **61**, 1087.

Berghuis, J., Haanappel, IJ. M., Potters, M., Loopstra, B. O., MacGillavry, C. H. & Veenendaal, A.L. (1955). *Acta Cryst.* 8, 478.

CHAPMAN, D. (1956). J. Chem. Soc., p. 2522.

McWeeny, R. (1952). Acta Cryst. 5, 463.

MILLS, O. S. & ROLLETT, J. S. (1961). Computing Methods and the Phase Problem in X-ray Analysis, p. 107. London: Pergamon Press.

PARRY, G. S. (1951). Acta Cryst. 4, 131.

SMITH, B. & HERNESTAM, S. (1954). Acta Chem. Scand. 8, 1111.

STACEY, M., BOURNE, E. J., TATLOW, J. C. & TEDDER, J. M. (1949). Nature, Lond. 164, 705.

STEHAGEN, E. (1951). Acta Chem. Scand. 5, 805.

Sydow, E. von (1956). Arkiv Kemi, 9, 231.

VAINSHTEIN, B. K. & PINSKER, Z. G. (1950). Dokl. Akad. Nauk SSSR, 72, 53.

VAND, V., MORLEY, W. M. & LOMER, T. R. (1951). Acta Cryst. 4, 324.

VIERVOLL, H. & ØGRIM, O. (1949). Acta Cryst. 2, 277.

Acta Cryst. (1963). 16, 748

The Crystal Structure of Monoaquobisacetylacetonatozinc

By H. Montgomery and E. C. Lingafelter

Department of Chemistry, University of Washington, Seattle 5, Wash., U.S.A.

(Received 18 May 1962)

The crystal structure of monoaquobisacetylacetonatozinc $[Zn(C_5H_7O_2)_2H_2O]$ has been determined by three-dimensional methods. The cell dimensions are a=10.48, b=5.37, c=10.94 Å, $\beta=93^{\circ}48'$, space group $P2_1$, with Z=2. The structure is made up of discrete molecules, containing 5-coordinate zinc with a coordination configuration intermediate between tetragonal pyramidal and trigonal bipyramidal.

Introduction

Lippert & Truter (1960) have recently published a determination of the crystal structure of monoaquobisacetylacetonatozine, $Zn(C_5H_7O_2)_2.H_2O.$ Since

we had an independent structure determination in the final refinement stages at the time we learned of their work, and since there appeared to be some significant differences in the results, we have completed our determination.